
EFFICIENTLY SCALING 
TRANSFORMER INFERENCE

Akul Gupta & Nachuan Wang



Transforming NLP with LLMs
● Breakthrough models like GPT-3 (100B+ parameters) and PaLM (500B+ parameters) have set new 

benchmarks in NLP 
● Why Scale? Larger models lead to better generalization, outperforming smaller models across tasks.

Challenges in Efficient Inference
Memory Footprint

● Large Models: High memory usage from trained parameters and transient states during decoding.
● KV Cache: Attention key and value tensors must be stored for the duration of decoding
● Memory Distribution: Model parameters exceed the memory capacity of a single accelerator chip

Latency Constraints

● Lower Parallelizability: Generative inference is less parallelizable, making it difficult to meet tight 
latency targets.

● Memory Bandwidth: High memory traffic between HBM and compute cores due to large memory 
footprint

Quadratic Scaling of Attention Mechanism

● Inference Cost: Attention mechanism costs increase quadratically with input sequence length

GRAINGER ENGINEERING

Introduction & Motivation

Focus of This Paper: How can we achieve 
scalable, low-latency inference while meeting the 
unique demands of different applications?

● Present principles to optimize model 
partitioning strategies.

● Explore trade-offs between latency and 
throughput to support different production 
settings



1. Parallelism Approaches

● NeMo Megatron (Korthikanti et al., 2022), GSPMD (Xu et al., 2021), Alpa (Zheng et al., 2022):
○ Focus on efficient model partitioning for training large models.
○ Use tensor and pipeline parallelism with memory optimizations to improve performance.

● FasterTransformer:
○ Provides a benchmark for multi-GPU multi-node inference across models like Megatron–Turing NLG 530B.
○ Combines parallelism strategies and memory optimizations for faster inference.

● DeepSpeed Inference (Aminabadi et al., 2022):
○ ZeRO offload enables efficient use of CPU and NVMe memory alongside GPUs, especially beneficial for larger batch sizes.

● EffectiveTransformer:
○ Optimizes batch processing by packing sequences to minimize padding.

● This paper builds upon, empirically-backed partitioning strategies for efficient scaling of large models based on model size, context length, and chip count.

2. ML Inference Efficiency

● Several approaches focus on improving inference by optimizing model architecture and compression techniques:
○ Efficient Attention Layers: (Roy et al., 2020; Choromanski et al., 2020; Kitaev et al., 2020)
○ Distillation & Pruning: (Sanh et al., 2019; Li et al., 2020)
○ Quantization: (Dettmers et al., 2022; Zafrir et al., 2019)

● This paper incorporates prior work on model quantization to enhance inference speedups and could integrate further with compression methods like pruning.

GRAINGER ENGINEERING

Related Works 

Existing Work: Parallelism & Inference Efficiency 



Inference Cost Tradeoffs & Breakdown 
● Scaling up model sizes can unlock new capabilities but comes with fundamental tradeoffs.
● Key Metrics to measure inference cost:

• Latency: Total time for an inference operation (prefill + decode)
• Prefill: Time to process input tokens at the start.
• Decode: Time to generate output tokens (can be per token, “per step”).

• Throughput: Tokens processed/generated per second
• Model FLOPS (Floating Point Operations Per Second) Utilization (MFU): Efficiency of hardware use, ratio of observed throughput to 

theoretical peak FLOPS.

Compute Costs and Scaling Challenges
Compute Costs:

● Matmul FLOPs: Each forward pass for N-parameter models requires 2N matmul FLOPs per token.
● Attention Mechanism: Adds fewer FLOPs but increases memory costs due to unique KV cache for each sequence.

Scaling Challenges:
● Low Latency Applications: Require smaller batches and more partitioning across chips, but this leads to lower MFU and higher costs per token.
● Long Attention Contexts: Larger attention KV cache can cause bottlenecks, leading to longer inference times.
● Offline Inference: Focuses on maximizing throughput by increasing batch size for better MFU and lower cost per token.

Balancing latency, throughput, and memory is key for cost-effective scaling. Large models require careful management of memory and chip communication 
for optimal efficiency.

GRAINGER ENGINEERING

Background 



Consider a Transformer model with the following parameters:

● n_params: Number of parameters in the model
● n_chips: Number of accelerator chips used for inference
● d_model (E): Model (or embedding) dimension
● d_ff (F): Feedforward intermediate dimension
● n_heads (H): Number of attention heads

Batch Setup and Token Handling

● Each batch of B sequences has:
○ L_input: Number of input tokens
○ L_gen: Number of output tokens generated

GRAINGER ENGINEERING

Background 

Inference Process

1. Prefill Phase:
○ Processes B × L_input tokens in parallel.
○ Single forward pass over all input tokens.

2. Decode Phase (Autoregressive Generation):
○ Sequential loop of L_gen steps.
○ One forward pass per step generates one token 

for each of the B examples.

Key Differences in Performance

● Prefill: Can be parallelized for faster processing.
● Decode: Must run sequentially, leading to different 

performance characteristics.

Inference Setup & Notation 



What is Model Partitioning?

● Model partitioning is the process of dividing a large neural network model (e.g., Transformer) across multiple devices (e.g., TPUs, GPUs).
● The goal is to distribute the model’s weights (parameters) and computations across multiple chips to enable efficient parallel processing.

Key Strategies for Model Partitioning

Tensor Dimension Sharding:
● Sharding involves splitting a model’s large tensors (e.g., weights) along one or more dimensions and distributing them across devices.
● Example: 1D & 2D Partitioning 2D Partitioning

Pipeline Parallelism:
● The model is split layer-wise so different layers of the model are distributed across multiple devices.
● Each device works on a subset of the layers, with outputs passed sequentially from one device to the next.

C. Data Parallelism vs. Model Parallelism:
● Data Parallelism: The same model copy is run on each device with different data batches.
● Model Parallelism: Different portions of the model are split and computed across multiple devices.

Communication in Partitioning

● Inter-device communication is required to synchronize the results of partial computations.

GRAINGER ENGINEERING

Background 

Partitioning



GRAINGER ENGINEERING

Background 

● System Overview:
○ Partitioning based on TPU v4 system with a 3D torus topology (X × Y × Z).
○ Tensor Dimensions:

■ B = Batch Size
■ L = Sequence Length
■ E = Embedding Dimension
■ F = MLP Feedforward Dimension

● Partitioning Notation:
○ BLE_xyz: Last dimension E of a tensor (shape BLE) is partitioned across X × Y × Z TPU axes.

■ Example: Tensor on each chip becomes [B, L, E / (X × Y × Z)].
○ Partialsum-x: Indicates a tensor has been summed locally on the x-axis and requires further summing across chips.

● Communication Collectives:
○ all-reduce(x): Sums a partial sum tensor across chips on the x-axis and broadcasts the result.

○ reduce-scatter(x): Reduces the tensor across chips but outputs a sharded result instead of replicated.

○ all-gather(x): Concatenates and broadcasts a sharded tensor back to all chips on the x-axis.

○ all-to-all: Shifts sharding from one tensor dimension to another using direct communication between chips.

Partitioning Notation & Communication Collectives



1. What is TPU Interconnect Topology?

● TPU (Tensor Processing Unit) interconnect topology refers to the physical structure that defines how 
TPUs communicate with each other in a multi-chip setup.

2. 3D Torus Topology

● Google TPU v4 uses a 3D torus topology to connect TPU chips in a grid-like structure:
○ Each chip is connected to its neighbors in three dimensions (X, Y, Z).
○ This design allows for low-latency communication and high bandwidth between TPUs.

3.Advantages of 3D Torus:

● Scalability: Supports a large number of TPUs interconnected in multiple directions.
● Efficient Communication: Reduces the communication bottleneck, enabling faster exchange of data 
● Fault Tolerance: If a link fails, data can be rerouted using alternative paths.

4. How It Impacts Model Partitioning

● Model partitioning leverages the 3D torus to efficiently divide and distribute model parameters and 
computations

● Communication primitives like all-reduce, reduce-scatter, and all-gather are optimized for this topology, 
ensuring efficient data transfer and reducing overhead in large distributed models.

GRAINGER ENGINEERING

Background 

TPU Interconnect Topology



GRAINGER ENGINEERING

Collective Operations

Number of chips: K
Size of full data: D
Network bandwidth between one pair of nodes: net_bw

Size of data chunk transferred between any pair of nodes: D/K
Time to transfer single data chunk: D/(K*net_bw)
Time to finish the collective operation: (D/(K*net_bw))*(K-1) ~= D/net_bw (assuming no link contention)

Implication: when K is large, T(collective) is independent of number of chips involved



1D weight-stationary

GRAINGER ENGINEERING

Feedforward Layer Partition

T(all-gather) = BLE / net_bw

T(reduce-scatter) = BLE / net_bw

T(total) = 2BLE / net_bw

+
=



GRAINGER ENGINEERING

Feedforward Layer Partition

2D weight-stationary

T(all-gather) = (BLE / X) / net_bw

T(reduce-scatter) = (BLF / YZ) / net_bw

T = (BL / net_bw) * (E/X + F/YZ)

+
=



GRAINGER ENGINEERING

Feedforward Layer Partition

2D weight-stationary, cont.

+ =

T = (BL / net_bw) * (E/X + F/YZ)

T(total) = 2BL / net_bw* (E/X + F/YZ)

T(total) = 2BL / net_bw * (E / X + FX / n_chip)

T(total, min) = (4BL / net_bw) * (EF / n_chip)^½

YZ = n_chip/X

When X = (E * n_chip / F)^½

T scales as O(1 / n_chip^½)

T = (BL / net_bw) * (E/X + F/YZ)



GRAINGER ENGINEERING

Feedforward Layer Partition

Weight-gathered
T(all-gather) = (BLE / XY) / net_bw

2 * T(all-gather) = (EF / Z) / net_bw

T(reduce-scatter) = (BLE / XY) / net_bw

+
+

T(total) = 2BLE / (net_bw * XY) + 2EF / (net_bw * Z) 

=



GRAINGER ENGINEERING

Feedforward Layer Partition

Weight-gathered, cont.

T(total) = 2BLE / (net_bw * XY) + 2EF / (net_bw * Z)

XY = n_chip / Z

T(total) = (2E / net_bw) * (BLZ / n_chip + F / Z)

When Z = (F * n_chip / BL)^½ 

T(total, min) = (4E / net_bw) * (BLF / n_chip)^½

More efficient for large B and L

Comparing with 2D weight-stationary:

T(total, min) = (4BL / net_bw) * (EF / n_chip)^½

T scales as O((BL)^½)

T scales as O(BL)



GRAINGER ENGINEERING

Attention Layer Partition

Multi-head vs. Multi-query

Reduce memory footprint & load time of KV cache ✅❌



GRAINGER ENGINEERING

Attention Layer Partition

Multi-head vs. Multi-query, cont.
Time spent in additional all-to-all 
operations:

T = 2(H+1)BQL_new / (net_bw * XYZ)

Time saved in KV cache access:

T = 2(H-1)BQL_cache / (mem_bw * XYZ)

Profitable when L_cache >> L_new

Multi-head attention Multi-query attention



GRAINGER ENGINEERING

Case Study on PaLM Models 

Methodology

● 256 TPU v4 chips, each with

○ 275 TFLOPS BF16 throughput

○ 32 GiB HBM, 1200 GB/s

○ 3D torus interconnect, 270 GB/s 

● PaLM 540B



GRAINGER ENGINEERING

Case Study on PaLM Models 

Partitioning Feedforward Layer

Decode phase: 2D weight-stationary performs better as as 
chip count increases (T(comm) scales as O(1 / n_chip^½ ))

Prefill phase: weight-gathered can achieve higher MFU 
before communication becomes a bottleneck (T(comm) 
scales as O((BL)^½))



GRAINGER ENGINEERING

Case Study on PaLM Models 

Partitioning Attention Layer

Optimized multiquery layout can fit up much larger context 
length by reducing memory footprint of KV cache 

Much longer sequence generation with almost constant 
latency per-step



GRAINGER ENGINEERING

Case Study on PaLM Models 

End-to-end Result

Decoding phase:
● Distinct cost between int8/bf16 at 

low batch size

Prefill phase:
● Trade-off between cost and batch 

size is less severe
● Smaller cost than decoding phase 

due to its high MFU



GRAINGER ENGINEERING

Case Study on PaLM Models 

End-to-end Result, cont.

Lower-latency: 
● Combine 1-batch prefill with 64-batch decode to increase MFU
● Low-batch-size latency grow sub-linearly with model size at the Pareto frontier

High-throughput: 
● MFUs are similar between the model sizes



GRAINGER ENGINEERING

FasterTransformer Benchmarks

Different Hardware Configurations:

● FasterTransformer: 16–32 NVIDIA A100s (80 GiB HBM)
● Paper Setup: 64 Google TPU v4 chips (32 GiB HBM)
● Results normalized using MFU (Multichip FLOP Utilization) for fair comparison

Key Benchmark Results:

● Benchmarked models:
○ Megatron 530B (Smith et al., 2022)
○ PaLM 540B (with multiquery attention & parallel attention/feedforward)

● Performance Highlights:
○ PaLM 540B: Best absolute latency & up to 10% better MFU than Megatron
○ Parallel layers improve MFU, although advantages are offset by larger 

dmodel in Megatron

FasterTransformer Scalability:

● FasterTransformer:
○ 32-way tensor parallelism max = 33% MFU
○ 16-way tensor parallelism max = 46% MFU
○ Communication bottleneck observed at higher parallelism

● Paper Implementation:
○ Scales up to 64-way tensor parallelism with 44% MFU
○ Uses 2D weight-stationary partitioning strategy, demonstrating superior 

scalability on TPU v4



Strengths:
• Comparative Evaluation: Strong empirical evidence of improvements by comparing performance against established benchmarks 

like FasterTransformer and Megatron.

• Scalability: Multiquery attention allows the model to handle up to 32× larger context lengths, ideal for long-form content generation 
and document understanding.

Weaknesses:
• Focus on Dense Models: The paper focuses on dense Transformer models, with limited exploration of sparsity techniques (e.g., 

Mixture of Experts) that could reduce FLOPs and memory costs.

• Limited Scalability Discussion: While scaling to 64 TPU v4 chips is discussed, there’s limited exploration of potential bottlenecks 
beyond this number, such as communication overheads.

Future Directions:
• Incorporating Sparsity: Further exploration of sparsity techniques like Mixture of Experts (MoE) to reduce FLOPs and improve 

scalability in larger models.

• Extending Quantization: Investigate activation quantization to further reduce inference costs, particularly in high-throughput 
applications.

GRAINGER ENGINEERING

Our Thoughts



Thank You 
Q/A


